首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54569篇
  免费   4619篇
  国内免费   36篇
  2022年   287篇
  2021年   1029篇
  2020年   771篇
  2019年   835篇
  2018年   1205篇
  2017年   1003篇
  2016年   1638篇
  2015年   2347篇
  2014年   2307篇
  2013年   2880篇
  2012年   3426篇
  2011年   3158篇
  2010年   1931篇
  2009年   1869篇
  2008年   2287篇
  2007年   2271篇
  2006年   2060篇
  2005年   2374篇
  2004年   2350篇
  2003年   1960篇
  2002年   1584篇
  2001年   1465篇
  2000年   1392篇
  1999年   1253篇
  1998年   576篇
  1997年   540篇
  1996年   574篇
  1995年   460篇
  1994年   468篇
  1993年   439篇
  1992年   935篇
  1991年   837篇
  1990年   768篇
  1989年   764篇
  1988年   760篇
  1987年   688篇
  1986年   649篇
  1985年   625篇
  1984年   584篇
  1983年   443篇
  1982年   339篇
  1981年   335篇
  1980年   316篇
  1979年   438篇
  1978年   364篇
  1977年   297篇
  1976年   251篇
  1975年   299篇
  1974年   302篇
  1973年   300篇
排序方式: 共有10000条查询结果,搜索用时 201 毫秒
991.
The biosynthesis of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas putida KT2442 during growth on carbohydrates was studied. PHAs isolated from P. putida cultivated on glucose, fructose, and glycerol were found to have a very similar monomer composition. In addition to the major constituent 3-hydroxydecanoate, six other monomers were found to be present: 3-hydroxyhexanoate, 3-hydroxyoctanoate, 3-hydroxydodecanoate, 3-hydroxydodecenoate, 3-hydroxytetradecanoate, and 3-hydroxytetradecenoate. The identity of all seven 3-hydroxy fatty acids was established by gas chromatography-mass spectrometry, one-dimensional 1H-nuclear magnetic resonance, and two-dimensional double-quantum filtered correlation spectroscopy 1H-nuclear magnetic resonance. The chemical structures of the monomer units are identical to the structure of the acyl moiety of the 3-hydroxyacyl-acyl carrier protein intermediates of de novo fatty acid biosynthesis. Furthermore, the degree of unsaturation of PHA and membrane lipids is similarly influenced by shifts in the cultivation temperature. These results strongly indicate that, during growth on nonrelated substrates, PHA monomers are derived from intermediates of de novo fatty acid biosynthesis. Analysis of a P. putida pha mutant and complementation of this mutant with the cloned pha locus revealed that the PHA polymerase genes necessary for PHA synthesis from octanoate are also responsible for PHA formation from glucose.  相似文献   
992.
The effects of Mg2+ on thermophilic (55 degrees C) granules grown on acetate in 0.2-liter upflow anaerobic sludge blanket reactors were studied. The methanogens in the granules were identified and counted by using antibody probes and the antigenic fingerprinting method. Packets of large coccoidal cells antigenically related to Methanosarcina thermophila TM-1 were scarce in the absence of Mg2+ but increased with increasing Mg2+ concentrations up to 30 mM; Methanosarcina packets immunologically related to Methanosarcina barkeri R1M3 showed a similar trend, and their numbers increased up to 100 mM Mg2+. The number of single cells antigenically related to TM-1, R1M3, and Methanosarcina mazei S-6 were scarce at low Mg2+ concentrations but increased drastically at 30 and 100 mM Mg2+. The number of rod-shaped bacteria antigenically related to Methanobacterium thermoautotrophicum GC1 and delta H was highest with no Mg2+ present, and their numbers decreased with increasing concentrations of the cation. These quantitative data, obtained by counting cells in suspensions made from disrupted granules, were confirmed by microscopic observation of the methanogenic subpopulations in thin histologic sections of the granules.  相似文献   
993.
994.
995.
Benzo[a]pyrene (BP) is an environmental genotoxin, which, following metabolic activation to 7,8-diol 9,10-epoxide (BPDE) derivatives, forms covalent adducts with cellular DNA. A major fraction of adducts are derived from the binding of N2 of guanine to the C10 position of BPDE. The mutagenic and carcinogenic potentials of these adducts are strongly dependent on the chirality at the four asymmetric benzylic carbon atoms. We report below on the combined NMR-energy minimization refinement characterization of the solution conformation of (-)-trans-anti-[BP]G positioned opposite C and flanked by G.C base pairs in the d(C1-C2-A3-T4-C5-[BP]G6-C7-T8-A9-C10-C11).d(G12-G13-T14++ +-A15-G16-C17- G18-A19-T20-G21-G22) duplex. Two-dimensional NMR techniques were applied to assign the exchangeable and non-exchangeable protons of the benzo[a]pyrenyl moiety and the nucleic acid in the modified duplex. These results establish Watson-Crick base pair alignment at the [BP]G6.C17 modification site, as well as the flanking C5.G18 and C7.G16 pairs within a regular right-handed helix. The solution structure of the (-)-trans-anti-[BP]G.C 11-mer duplex has been determined by incorporating intramolecular and intermolecular proton-proton distances defined by lower and upper bounds deduced from NOE buildup curves as constraints in energy minimization computations. The BP ring spans both strands of the duplex in the minor groove and is directed toward the 3'-end of the modified strand in the refined structure. One face of the BP ring of [BP]G6 stacks over the C17 residue across from it on the partner strand while the other face is exposed to solvent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
996.
T Fox  E de Miguel  J S Mort  A C Storer 《Biochemistry》1992,31(50):12571-12576
A peptide (PCB1) corresponding to the proregion of the rat cysteine protease cathepsin B was synthesized and its ability to inhibit cathepsin B activity investigated. PCB1 was found to be a potent inhibitor of mature cathepsin B at pH 6.0, yielding a Ki = 0.4 nM. This inhibition obeyed slow-binding kinetics and occurred as a one-step process with a k1 = 5.2 x 10(5) M-1 s-1 and a k2 = 2.2 x 10(-4) s-1. On dropping from pH 6.0 to 4.7, Ki increased markedly, and whereas k1 remained essentially unchanged, k2 increased to 4.5 x 10(-3) s-1. Thus, the increase in Ki at lower pH is due primarily to an increased dissociation rate for the cathepsin B/PCB1 complex. At pH 4.0, the inhibition was 160-fold weaker (Ki = 64 nM) than at pH 6.0, and the propeptide appeared to behave as a classical competitive inhibitor rather than a slow-binding inhibitor. Incubation of cathepsin B with a 10-fold excess of PCB1 overnight at pH 4.0 resulted in extensive cleavage of the propetide whereas no cleavage occurred at pH 6.0, consistent with the formation of a tight complex between cathepsin B and PCB1 at the higher pH. The synthetic propeptide of cathepsin B was found to be a much weaker inhibitor of papain, a structurally similar cysteine protease, and no pH dependence was observed. Inhibition constants of 2.8 and 5.6 microM were obtained for papain inhibition by PCB1 at pH 4.0 and 6.0, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
997.
Cytochrome P4502B1 reacts with phenylhydrazine or phenyldiazene to give an iron-phenyl complex that oxidatively rearranges in situ to the two N-phenylprotoporphyrin IX regioisomers with the phenyl group on pyrrole rings A (NA) and D (ND) [Swanson, B. A., Dutton, D. R., Lunetta, J. M., Yang, C. S., & Ortiz de Montellano, P. R. (1991) J. Biol. Chem. 266, 19258-19264]. The conclusion that the active site of cytochrome P4502B1 is open above pyrrole rings A and D but not B and C is extended here by studies with larger arylhydrazines. The N-arylprotoporphyrin IX standards required for product identification were obtained by reaction of the arylhydrazines with equine myoglobin. Cytochrome P4502B1 aryl-iron complex formation followed by oxidative shift of the aryl group produces the following N-aryl-protoporphyrin IX NA:ND regioisomer ratios: phenylhydrazine (39:61), 3,5-dimethylphenylhydrazine (29:71), 4-tert-butylhydrazine (25:75), 2-naphthylhydrazine (less than 2:greater than 98), and 4-(phenyl)phenylhydrazine (87:13). Electron-withdrawing substituents (as in 3,5-dichlorophenyl) prevent the aryl group shift. The increase in the proportion of the ND regioisomer with increasing bulk of the aryl group suggests that the region over pyrrole ring A is more sterically encumbered than that over pyrrole ring D. The regiospecificity is reversed, however, with 4-(phenyl)phenylhydrazine, which primarily gives the NA regioisomer. This reversal suggests that the active site has a sloping roof that is higher over pyrrole ring A than pyrrole ring D and that provides a larger steric barrier to the shift of tall aryl moieties than the barrier over pyrrole ring A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
998.
Two immunostimulating peptides were isolated from human milk proteins by enzymatic digestion, the tripeptide GLF and the hexapeptide VEPIPY. These peptides increased the phagocytosis of human and murine macrophages and protected mice against Klebsiella pneumoniae infection. The present study showed that this activity may be correlated to the presence of specific binding sites on human blood phagocytic cells. The receptor molecules implicated were different for the two peptides. [3H]GLF specifically bound to PMNL and monocytes, whereas [3H]VEPIPY only bound to monocytes. The leukemic promyelocytic cell line HL-60 differentiated into granulocytes or into macrophages (depending on inducer used) coroborated these results. Specific binding of [3H]GLF on plasma membrane preparations of human PMNL (20 degrees C) was saturable and Scatchard analysis indicated two classes of binding sites: high-affinity sites of Kd 2.3 +/- 1.0 nM and Bm 60 +/- 9 fmol/mg protein and low-affinity sites of Kd 26.0 +/- 3.5 nM and Bm 208 +/- 45 fmol/mg protein. [3H]GLF binding was inhibited in a concentration-dependent manner by various analogous peptides, such as LLF, GLY, LLY and RGDGLF, but not by RGD, RGDS, VEPIPY and the chemotactic peptide f-Met-Leu-Phe (f-MLF). Only at high concentrations the direct analog MLF competed with labeled GLF. An important inhibitory effect was also observed with C1q component of the complement whereas C3 and BSA were uneffective. Specific binding of [3H]VEPIPY on monocyte membranes (20 degrees C) was saturable and Scatchard analysis was consistent with one class of binding sites of Kd 3.7 +/- 0.3 nM and Bm 150 +/- 6 fmol/mg protein.  相似文献   
999.
Monovalent cations decrease the initial rate of uptake of the membrane potential probe 2-(dimethylaminostyryl)-1-ethyl-pyridinium (DMP) into metabolizing cells, showing that the cells are depolarized. A steep decrease in this rate was found even at low cation concentrations, reaching 62%, 42%, 58%, 40% and 40% at high concentrations of K+, Rb+, Cs+, Na+ and Li+, respectively. The corresponding concentrations at which half-maximum decrease was found were 0.22, 0.36, 1.2, 17 and 17 mM. These values are of the same order of magnitude as the half-saturation concentrations for monovalent cation uptake by the yeast.  相似文献   
1000.
Using 2H- and 31P-NMR techniques the effects of temperature variation and phenethyl alcohol addition were investigated on lipid acyl chain order and on the macroscopic lipid organization of membrane systems derived from cells of the Escherichia coli fatty acid auxotrophic strain K1059, which was grown in the presence of [11,11-2H2]oleic acid. Membranes of intact cells showed a gel to liquid-crystalline phase transition in the range of 4-20 degrees C, which was similar to that observed for the total lipid extract and for the dominant lipid species phosphatidylethanolamine (PE). Phosphatidylglycerol (PG) remained in a fluid bilayer throughout the whole temperature range (4-70 degrees C). At 30 degrees C acyl chain order was highest in PE, followed by the total lipid extract, PG, intact cells, and isolated inner membrane vesicles. Acyl chain order in E. coli PE and PG was much higher than in the corresponding dioleoylphospholipids. E. coli PE was found to maintain a bilayer organization up to about 60 degrees C, whereas in the total lipid extract as well as in intact E. coli cells bilayer destabilization occurred already at about 42 degrees C. It is proposed that the regulation of temperature at which the bilayer-to-non-bilayer transition occurs may be important for membrane functioning in E. coli. Addition of phenethyl alcohol did not affect the macroscopic lipid organization in E. coli cells or in the total lipid extract, but caused a large reduction in chain order of about 70% at 1 mol% of the alcohol in both membrane systems. It is concluded that while both increasing temperature and addition of phenethyl alcohol can affect membrane integrity, in the former case this is due to the induction of non-bilayer lipid structures, whereas in the latter case this is caused by an increase in membrane fluidity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号